	Indian Statistical Institute	
	B.Math. (Hons.) II Year	
	Second Semester 2006-07	
	Mid-Sem Examination	
	Algebra IV	
Time: 3 hrs	Date:07-03-07	Instructor: M Thakur

All questions carry equal marks. Attempt all the questions.

- 1. Prove that the polynomial $P(X) = X^3 3X 1$ is irreducible over \mathbb{Q} , the field of rational numbers.
- 2. Compute the degree $[\mathbb{Q}(\sqrt[3]{2} + \sqrt{5}) : \mathbb{Q}].$
- 3. Prove that $8X^3 6X 1$ is irreducible over \mathbb{Q} .
- 4. Let char k = p > 0 and $f(X) \in k[X]$ be such that f'(X) = 0. Prove that \exists a polynomial $g(X) \in k[X]$ such that

$$f(X) = g(X^p).$$

- 5. Let H and K be subgroups of G, $|H|^2 > |G|$, $|K|^2 > |G|$. Show that $H \cap K \neq \{1\}$. Here | | denote the order.
- 6. Let $n \ge 3$. Prove that the cycle (1 2 3) is not the cube of any element in S_n .
- 7. In S_n , prove that conjugate of a cycle of length r is a cycle of length r.
- 8. Determine the number of conjugacy class in S_4 .
- 9. Find the number of non-isomorphic abelian groups of order 81.
- 10. Let $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $1 \leq i \leq n$. Prove that $\sqrt[3]{2} \notin K$.